Bridging Persistent Homology and Discrete Morse Theory with Applications to Shape Reconstruction

Fabian Roll (TUM)

AATRN seminar

Joint work with Ulrich Bauer

	1	2	3	4	5	6	7			1	2	3	4	5	6	7
1			1		1				1	1						
2			1			1			2		1					
3							1		3			1				
4					1	1		- D	4				1			
5							1		5					1		
6							1		6						1	
7									7							1
				Ř				2				Ī	T			

	1	2	3	4	5	6	7			1	2	3	4	5	6	7
1			1		1				1	1						
2			1			1			2		1					
3							1	_ ת _	3			1				
4					1	1		- D	4				1			
5							1		5					1		
6							1		6						1	
7									7							1
				Ř				2				Ī	T			

	1	2	3	4	5	6	7			1	2	3	4	5	6	7
1			1		1	1			1	1						
2			1			1			2		1					
3							1		3			1				
4					1	0		- D	4				1			
5							1		5					1	1	
6							1		6						1	
7									7							1
				Ř				2				Ī	T			

	1	2	3	4	5	6	7			1	2	3	4	5	6	7
1			1		1	1			1	1						
2			1			1			2		1					
3							1		3			1				
4					1				4				1			
5							1		5					1	1	
6							1		6						1	
7									7							1
				\tilde{r}				2				Ī	T			

	1	2	3	4	5	6	7			1	2	3	4	5	6	7
1			1		1	0			1	1						
2			1			0			2		1					
3							1		3			1			1	
4					1			- D	4				1			
5							1		5					1	1	
6							1		6						1	
7									7							1
			$\overline{}$	Ř				2					7			

	1	2	3	4	5	6	7			1	2	3	4	5	6	7
1			1		1				1	1						
2			1						2		1					
3							1		3			1			1	
4					1				4				1			
5							1		5					1	1	
6							1		6						1	
7									7							1
				Ř				2				Ī	T			

	1	2	3	4	5	6	7			1	2	3	4	5	6	7
1			1		1				1	1						
2			1						2		1					
3							1		3			1			1	
4					1				4				1			
5							1		5					1	1	
6							1		6						1	
7									7							1
				Ř				2				Ī	T			

	1	2	3	4	5	6	7			1	2	3	4	5	6	7
1			1		1				1	1						
2			1						2		1					
3							1		3			1			1	
4					1			- D	4				1			
5							1		5					1	1	
6							1		6						1	
7									7							1
				Ř				2				Ī	T			

Apparent pairs

We have the following construction for a computational shortcut:

Definition. In a simplexwise filtration $(K_i = \{\sigma_1, \dots, \sigma_i\})_i$, a pair of simplices (σ_i, σ_j) is an apparent pair if

- σ_i latest proper face of σ_j , and
- σ_j is the earliest proper coface of σ_i .

Apparent pairs

We have the following construction for a computational shortcut:

Definition. In a simplexwise filtration $(K_i = \{\sigma_1, \ldots, \sigma_i\})_i$, a pair of simplices (σ_i, σ_j) is an apparent pair if

- σ_i latest proper face of σ_j , and
- σ_j is the earliest proper coface of σ_i .

Lemma (Bauer). If (σ_i, σ_j) is an apparent pair, the interval [i, j) is in the persistence barcode.

A discrete Morse function is a

- monotone function $f \colon K \to \mathbb{R}$ that
- partitions the complex into pairs and critical simplices, yielding the discrete gradient V

A discrete Morse function is a

- monotone function $f \colon K \to \mathbb{R}$ that
- partitions the complex into pairs and critical simplices, yielding the discrete gradient V

Discrete Morse functions - and their gradients - encode collapses:

A discrete Morse function is a

- monotone function $f \colon K \to \mathbb{R}$ that
- partitions the complex into pairs and critical simplices, yielding the discrete gradient V

Discrete Morse functions - and their gradients - encode collapses:

A discrete Morse function is a

- monotone function $f \colon K \to \mathbb{R}$ that
- partitions the complex into pairs and critical simplices, yielding the discrete gradient V

Discrete Morse functions - and their gradients - encode collapses:

Generalized discrete Morse theory

Generalized gradients consist of intervals (in the face poset) instead of just facet pairs:

Persistent homology and discrete Morse theory

- Bauer/Lange/Wardetzky (2010): Optimal topological simplification of discrete functions on surfaces
- Mischaikow/Nanda (2011):
 - Morse theory for filtrations and efficient computation of persistent homology

Persistent homology and discrete Morse theory

- Bauer/Lange/Wardetzky (2010): Optimal topological simplification of discrete functions on surfaces
- Mischaikow/Nanda (2011): Morse theory for filtrations and efficient computation of persistent homology
- Bauer (2015/2019): Ripser
 - uses of apparent pairs as a computational shortcut (apparent pairs are persistence pairs)
 - apparent pairs of a simplexwise filtration form a discrete gradient

Persistent homology and discrete Morse theory

- Bauer/Lange/Wardetzky (2010): Optimal topological simplification of discrete functions on surfaces
- Mischaikow/Nanda (2011): Morse theory for filtrations and efficient computation of persistent homology
- Bauer (2015/2019): Ripser
 - uses of apparent pairs as a computational shortcut (apparent pairs are persistence pairs)
 - apparent pairs of a simplexwise filtration form a discrete gradient
- Bauer/R (2022):

Gromov hyperbolicity, geodesic defect, and apparent pairs in Vietoris-Rips filtrations

the zero persistence apparent pairs of a lexicographically refined sublevel set filtration of a generalized discrete Morse function refine the corresponding generalized gradient

Delaunay complexes

Voronoi diagram and Delaunay triangulation

Delaunay complexes

Definition. The Delaunay complex $\text{Del}_r(X)$, or alpha complex, of $X \subseteq \mathbb{R}^d$ is the nerve of the cover by closed Voronoi balls of radius r centered at points in X.

Wrap

- Originally introduced by Edelsbrunner (1995) as a subcomplex of the Delaunay triangulation for surface reconstruction, using flow lines associated to Euclidean distance functions
- Redeveloped using discrete Morse theory (Forman 1998) by Bauer & Edelsbrunner (2014/17)

Wrap complex

Delaunay complex

Morse Theory of Čech and Delaunay complexes

Proposition (Bauer, Edelsbrunner 2014). The Čech and Delaunay radius functions are both generalized discrete Morse functions.

Morse Theory of Čech and Delaunay complexes

Proposition (Bauer, Edelsbrunner 2014). The Čech and Delaunay radius functions are both generalized discrete Morse functions.

Theorem (Bauer, Edelsbrunner 2017).

Čech, Delaunay, and Wrap complexes (at any scale r) are related by collapses encoded by a single discrete gradient field:

 $\check{\operatorname{Cech}}_r(X) \searrow \operatorname{Del}_r(X) \searrow \operatorname{Wrap}_r(X).$

Morse Theory of Čech and Delaunay complexes

Proposition (Bauer, Edelsbrunner 2014). The Čech and Delaunay radius functions are both generalized discrete Morse functions.

Theorem (Bauer, Edelsbrunner 2017).

Čech, Delaunay, and Wrap complexes (at any scale r) are related by collapses encoded by a single discrete gradient field:

 $\check{\operatorname{Cech}}_r(X) \searrow \operatorname{Del}_r(X) \searrow \operatorname{Wrap}_r(X).$

Remark. The Wrap complex $\operatorname{Wrap}_r(X)$ is the smallest subcomplex of $\operatorname{Del}_r(X)$ such that the Delaunay gradient induces a collapse $\operatorname{Del}_r(X) \searrow \operatorname{Wrap}_r(X)$.

Consider the gradient V of the Delaunay radius function $Del(X) \to \mathbb{R}$.

Consider the gradient V of the Delaunay radius function $Del(X) \to \mathbb{R}$.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).

- contains all critical simplices
- is a union of intervals of V.

Consider the gradient V of the Delaunay radius function $Del(X) \to \mathbb{R}$.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).

- contains all critical simplices
- is a union of intervals of V.

Consider the gradient V of the Delaunay radius function $Del(X) \to \mathbb{R}$.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).

- contains all critical simplices
- is a union of intervals of V.

Consider the gradient V of the Delaunay radius function $Del(X) \to \mathbb{R}$.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).

- contains all critical simplices
- is a union of intervals of V.

Consider the gradient V of the Delaunay radius function $Del(X) \to \mathbb{R}$.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).

- contains all critical simplices
- is a union of intervals of V.

Consider the gradient V of the Delaunay radius function $Del(X) \to \mathbb{R}$.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).

- contains all critical simplices
- is a union of intervals of V.
Consider the gradient V of the Delaunay radius function $Del(X) \to \mathbb{R}$.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).

 $\operatorname{Wrap}_r(X)$ is the *descending complex* of V on $\operatorname{Del}_r(X)$: smallest subcomplex of $\operatorname{Del}_r(X)$ that

- contains all critical simplices
- is a union of intervals of V.

Consider the gradient V of the Delaunay radius function $Del(X) \to \mathbb{R}$.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).

 $\operatorname{Wrap}_r(X)$ is the *descending complex* of V on $\operatorname{Del}_r(X)$: smallest subcomplex of $\operatorname{Del}_r(X)$ that

- contains all critical simplices
- is a union of intervals of V.

Point cloud

Delaunay triangulation

Critical simplices

Delaunay complex

Wrap complex

The persistent homology of the Delaunay filtration $Del_{\bullet}(X)$ can be computed by the *exhaustive Matrix reduction* algorithm:

• total order on X induces a lexicographic total order on the simplicies $\sigma_1 < \cdots < \sigma_n$ yielding a simplexwise refinement $K_{\bullet} = (K_i = \{\sigma_1, \dots, \sigma_i\})_i$ of $\text{Del}_{\bullet}(X)$

- total order on X induces a lexicographic total order on the simplicies $\sigma_1 < \cdots < \sigma_n$ yielding a simplexwise refinement $K_{\bullet} = (K_i = \{\sigma_1, \dots, \sigma_i\})_i$ of $\text{Del}_{\bullet}(X)$
- uses a variant of Gaussian elimination:
 - R = D boundary matrix (\mathbb{Z}_2 coefficients) of K_{\bullet} ,
 - V = I identity matrix

- total order on X induces a lexicographic total order on the simplicies $\sigma_1 < \cdots < \sigma_n$ yielding a simplexwise refinement $K_{\bullet} = (K_i = \{\sigma_1, \dots, \sigma_i\})_i$ of $\text{Del}_{\bullet}(X)$
- uses a variant of Gaussian elimination:
 - R = D boundary matrix (\mathbb{Z}_2 coefficients) of K_{\bullet} , V = I identity matrix
 - while $\exists i < j$ with $(R_i)_k \neq 0$, where $k = \text{pivot } R_i$
 - \blacktriangleright add R_i to R_j
 - \blacktriangleright add V_i to V_j

- total order on X induces a lexicographic total order on the simplicies $\sigma_1 < \cdots < \sigma_n$ yielding a simplexwise refinement $K_{\bullet} = (K_i = \{\sigma_1, \dots, \sigma_i\})_i$ of $\text{Del}_{\bullet}(X)$
- uses a variant of Gaussian elimination:
 - R = D boundary matrix (\mathbb{Z}_2 coefficients) of K_{\bullet} ,
 - V = I identity matrix
 - while $\exists i < j$ with $(R_j)_k \neq 0$, where $k = \text{pivot } R_i$
 - \blacktriangleright add R_i to R_j
 - \blacktriangleright add V_i to V_j
- yields a reduced matrix $R = D \cdot V$ (columns have distinct pivots) and V is full rank upper triangular

- total order on X induces a lexicographic total order on the simplicies $\sigma_1 < \cdots < \sigma_n$ yielding a simplexwise refinement $K_{\bullet} = (K_i = \{\sigma_1, \dots, \sigma_i\})_i$ of $\text{Del}_{\bullet}(X)$
- uses a variant of Gaussian elimination:
 - R = D boundary matrix (\mathbb{Z}_2 coefficients) of K_{\bullet} ,
 - V = I identity matrix
 - while $\exists i < j$ with $(R_j)_k \neq 0$, where $k = \text{pivot } R_i$
 - \blacktriangleright add R_i to R_j
 - \blacktriangleright add V_i to V_j
- yields a reduced matrix $R = D \cdot V$ (columns have distinct pivots) and V is full rank upper triangular
- determines the barcode through $\{[\operatorname{pivot} R_i, i) \mid R_i \neq 0\}$

Reduction process

Loose ends in the literature:

• Cohen-Steiner–Lieutier–Vuillamy (2022) consider shape reconstruction from point clouds

- Cohen-Steiner–Lieutier–Vuillamy (2022) consider shape reconstruction from point clouds
 - using lexicographically minimal cycles $\min_{c \in C_*} (z + \partial c)$

- Cohen-Steiner-Lieutier-Vuillamy (2022) consider shape reconstruction from point clouds
 - using lexicographically minimal cycles $\min_{c \in C_*} (z + \partial c)$
 - \blacktriangleright and its connection to the persistence computation (lex. minimal \Leftrightarrow exhaustively reduced)

- Cohen-Steiner–Lieutier–Vuillamy (2022) consider shape reconstruction from point clouds
 - using lexicographically minimal cycles $\min_{c \in C_*} (z + \partial c)$
 - ▶ and its connection to the persistence computation (lex. minimal \Leftrightarrow exhaustively reduced)
 - using a slightly different total order on simplices refining the minimum enclosing radius function

- Cohen-Steiner-Lieutier-Vuillamy (2022) consider shape reconstruction from point clouds
 - using lexicographically minimal cycles $\min_{c \in C_*} (z + \partial c)$
 - and its connection to the persistence computation (lex. minimal \Leftrightarrow exhaustively reduced)
 - using a slightly different total order on simplices refining the minimum enclosing radius function
- Forman (1998) defines a flow $C_*(K) \to C_*(K)$ associated to a discrete gradient

- Cohen-Steiner-Lieutier-Vuillamy (2022) consider shape reconstruction from point clouds
 - ▶ using lexicographically minimal cycles $\min_{c \in C_*} (z + \partial c)$
 - \blacktriangleright and its connection to the persistence computation (lex. minimal \Leftrightarrow exhaustively reduced)
 - using a slightly different total order on simplices refining the minimum enclosing radius function
- Forman (1998) defines a flow $C_*(K) o C_*(K)$ associated to a discrete gradient

- Kozlov/Sköldberg/Jöllenbeck–Welker (2006/08/09) generalize discrete Morse theory to based chain complexes (*algebraic Morse theory*)
 - the basis elements take the role of the simplices in discrete Morse theory
 - all other notions translate straightforwardly

We interpret persistent homology in terms of algebraic Morse theory:

• persistence pairs form an algebraic gradient

We interpret persistent homology in terms of algebraic Morse theory:

- persistence pairs form an algebraic gradient
- exhaustive Matrix reduction corresponds to gradient flow

We interpret persistent homology in terms of algebraic Morse theory:

- persistence pairs form an algebraic gradient
- exhaustive Matrix reduction corresponds to gradient flow
- the lexicographically minimal cycles are invariant under the algebraic gradient flow

We interpret persistent homology in terms of algebraic Morse theory:

- persistence pairs form an algebraic gradient
- exhaustive Matrix reduction corresponds to gradient flow
- the lexicographically minimal cycles are invariant under the algebraic gradient flow
- connects to generalized discrete Morse theory, and hence to the Wrap complex, through gradient refinements (by apparent pairs)

Minimal cycles and Wrap complexes

Theorem (Bauer, R). Let $X \subset \mathbb{R}^d$ be a finite subset in general position and let $r \in \mathbb{R}$. Then the lexicographically minimal cycles of $\text{Del}_r(X)$, with respect to the Delaunay-lexicographic order on the simplices, are supported on $\text{Wrap}_r(X)$.

Point cloud reconstruction with most persistent features

The lexicographically minimal cycle, with respect to the Delaunay-lexicographic order on the simplices, corresponding to the interval in the persistence barcode of the Delaunay filtration with the largest death/birth ratio:

\$ docker build -o output github.com/fabian-roll/wrappingcycles

Let $R = D \cdot V$ be the reduced boundary matrix of an elementwise filtration.

Let $R = D \cdot V$ be the reduced boundary matrix of an elementwise filtration.

The filtered chain complexes decomposes into elementary summands of the form $(R_i \neq 0)$:

$$\cdots \to 0 \to \langle V_i \rangle \xrightarrow{\partial} \langle R_i \rangle \to 0 \to \dots$$

Let $R = D \cdot V$ be the reduced boundary matrix of an elementwise filtration.

The filtered chain complexes decomposes into elementary summands of the form $(R_i \neq 0)$:

$$\dots \to 0 \to \langle V_i \rangle \xrightarrow{\partial} \langle R_i \rangle \to 0 \to \dots$$

• The pairs of columns (R_i, V_i) form an algebraic gradient.

Let $R = D \cdot V$ be the reduced boundary matrix of an elementwise filtration.

The filtered chain complexes decomposes into elementary summands of the form $(R_i \neq 0)$:

$$\cdots \to 0 \to \langle V_i \rangle \xrightarrow{\partial} \langle R_i \rangle \to 0 \to \dots$$

- The pairs of columns (R_i, V_i) form an algebraic gradient.
- We consider another: the *reduction gradient*, given by the pairs (pivot R_i, V_i).

Let $R = D \cdot V$ be the reduced boundary matrix of an elementwise filtration.

The filtered chain complexes decomposes into elementary summands of the form $(R_i \neq 0)$:

$$\cdots \to 0 \to \langle V_i \rangle \xrightarrow{\partial} \langle R_i \rangle \to 0 \to \dots$$

- The pairs of columns (R_i, V_i) form an algebraic gradient.
- We consider another: the *reduction gradient*, given by the pairs (pivot R_i, V_i).

Remark. For a simplexwise refined sublevelset filtration of a discrete Morse function, the corresponding discrete gradient is *extended by* the reduction gradient.

Definition. The flow $\Phi \colon C_* \to C_*$ determined by W is the chain map given by

 $\Phi(c) = c + \partial F(c) + F(\partial c),$

where $F: C_* \to C_{*+1}$ is the unique linear map defined on the basis elements $\sigma \in \Sigma_*$ as

$$\mathbf{F}(\sigma) = -\frac{1}{\langle \partial \tau, \sigma \rangle} \cdot \tau \text{ if } \sigma \text{ is contained in a pair } (\sigma, \tau) \in W.$$

Definition. The flow $\Phi \colon C_* \to C_*$ determined by W is the chain map given by

 $\Phi(c) = c + \partial F(c) + F(\partial c),$

where $F\colon C_*\to C_{*+1}$ is the unique linear map defined on the basis elements $\sigma\in\Sigma_*$ as

$$\mathbf{F}(\sigma) = -\frac{1}{\langle \partial \tau, \sigma \rangle} \cdot \tau \text{ if } \sigma \text{ is contained in a pair } (\sigma, \tau) \in W.$$

 $\bullet~{\rm F}$ is a chain homotopy between the identity and the flow Φ

Definition. The flow $\Phi \colon C_* \to C_*$ determined by W is the chain map given by

$$\Phi(c) = c + \partial F(c) + F(\partial c),$$

where $F\colon C_*\to C_{*+1}$ is the unique linear map defined on the basis elements $\sigma\in\Sigma_*$ as

$$\mathbf{F}(\sigma) = -\frac{1}{\langle \partial \tau, \sigma \rangle} \cdot \tau \text{ if } \sigma \text{ is contained in a pair } (\sigma, \tau) \in W.$$

- ${\ensuremath{\,\bullet\,}}$ ${\ensuremath{\,\rm F}}$ is a chain homotopy between the identity and the flow Φ
- If c is a cycle, then the flow reduces to $\Phi(c) = c + \partial F(c)$ and therefore acts on each homology class of the chain complex by a change of representative cycle

Let $R = D \cdot V$ be the reduced boundary matrix of an elementwise filtration (\mathbb{F}_2 coefficients).

Let $R = D \cdot V$ be the reduced boundary matrix of an elementwise filtration (\mathbb{F}_2 coefficients).

• For the reduction gradient, given by the pairs $(pivot R_i, V_i)$ with $R_i \neq 0$, we have

$$\Phi(c) = c + \sum_{i \in \text{Pivots } R} c_i \cdot \partial F(\sigma_i)$$
Exhaustive Matrix reduction corresponds to gradient flow

Let $R = D \cdot V$ be the reduced boundary matrix of an elementwise filtration (\mathbb{F}_2 coefficients).

• For the reduction gradient, given by the pairs $(pivot R_i, V_i)$ with $R_i \neq 0$, we have

$$\Phi(c) = c + \sum_{i \in \text{Pivots } R} c_i \cdot \partial F(\sigma_i) = c + \sum_{i \in \text{Pivots } R} c_i \cdot \partial V_{\text{death } i}$$

Exhaustive Matrix reduction corresponds to gradient flow

Let $R = D \cdot V$ be the reduced boundary matrix of an elementwise filtration (\mathbb{F}_2 coefficients).

• For the reduction gradient, given by the pairs $(pivot R_i, V_i)$ with $R_i \neq 0$, we have

$$\Phi(c) = c + \sum_{i \in \text{Pivots } R} c_i \cdot \partial \operatorname{F}(\sigma_i) = c + \sum_{i \in \text{Pivots } R} c_i \cdot \partial V_{\text{death } i} = c + \sum_{i \in \text{Pivots } R} c_i \cdot R_{\text{death } i}$$

Exhaustive Matrix reduction corresponds to gradient flow

Let $R = D \cdot V$ be the reduced boundary matrix of an elementwise filtration (\mathbb{F}_2 coefficients).

• For the reduction gradient, given by the pairs $(pivot R_i, V_i)$ with $R_i \neq 0$, we have

$$\Phi(c) = c + \sum_{i \in \text{Pivots } R} c_i \cdot \partial \operatorname{F}(\sigma_i) = c + \sum_{i \in \text{Pivots } R} c_i \cdot \partial V_{\text{death } i} = c + \sum_{i \in \text{Pivots } R} c_i \cdot R_{\text{death } i}$$

• the stablized cycle $\Phi^{\infty}(c)$ is the corresponding exhaustively reduced cycle

Proposition. Smaller gradients have more flow-invariant cycles, i.e., for algebraic gradients $W \subseteq P$ with associated algebraic flows Ψ, Φ , we have $C^{\Phi} \subseteq C^{\Psi}$.

Proposition. Smaller gradients have more flow-invariant cycles, i.e., for algebraic gradients $W \subseteq P$ with associated algebraic flows Ψ, Φ , we have $C^{\Phi} \subseteq C^{\Psi}$.

Proposition. Smaller gradients have more flow-invariant cycles, i.e., for algebraic gradients $W \subseteq P$ with associated algebraic flows Ψ, Φ , we have $C^{\Phi} \subseteq C^{\Psi}$.

Proposition. For a (non-generalized) discrete gradient W on K, the associated flow invariant chains C^{Ψ} are supported on the descending complex D(W).

Proposition. Smaller gradients have more flow-invariant cycles, i.e., for algebraic gradients $W \subseteq P$ with associated algebraic flows Ψ, Φ , we have $C^{\Phi} \subseteq C^{\Psi}$.

 $\int_{-\infty}^{\infty}$ zero persistence apparent pairs are contained in the reduction gradient

Proposition. For a (non-generalized) discrete gradient W on K, the associated flow invariant chains C^{Ψ} are supported on the descending complex D(W).

Proposition. Smaller gradients have more flow-invariant cycles, i.e., for algebraic gradients $W \subseteq P$ with associated algebraic flows Ψ, Φ , we have $C^{\Phi} \subseteq C^{\Psi}$.

 $\int zero$ persistence apparent pairs are contained in the reduction gradient

Proposition. For a (non-generalized) discrete gradient W on K, the associated flow invariant chains C^{Ψ} are supported on the descending complex D(W).

 $\int_{\mathcal{X}}$ zero persistence apparent pairs refine the generalized gradient (of the Delaunay radius function)

Summary

- Provide a tight link between persistent homology and discrete Morse theory
 - such that the corresponding algebraic gradient flow can be viewed as a variant of the reduction algorithm for computing persistent homology

Summary

- Provide a tight link between persistent homology and discrete Morse theory
 - such that the corresponding algebraic gradient flow can be viewed as a variant of the reduction algorithm for computing persistent homology
- Establish a strong connection between Morse-theoretic and homological approaches to shape reconstruction
 - lexicographically minimal cycles of $Del_r(X)$ are supported on the Wrap complex $Wrap_r(X)$

Funding: DFG - TRR109 Discretization in Geometry and Dynamics