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Computing persistent homology
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Computing persistent homology
Apparent pairs

We have the following construction for a computational shortcut:

Definition. In a simplexwise filtration (Ki = {σ1, . . . , σi})i, a pair of simplices (σi, σj) is an
apparent pair if
• σi latest proper face of σj , and
• σj is the earliest proper coface of σi.

Lemma (Bauer). If (σi, σj) is an apparent pair, the interval [i, j) is in the persistence barcode.
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Discrete Morse theory
A discrete Morse function is a
• monotone function f : K → R that
• partitions the complex into pairs and critical simplices, yielding the discrete gradient V

Discrete Morse functions - and their gradients - encode collapses:
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Generalized discrete Morse theory

Generalized gradients consist of intervals (in the face poset) instead of just facet pairs:
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Persistent homology and discrete Morse theory

• Bauer/Lange/Wardetzky (2010):
Optimal topological simplification of discrete functions on surfaces

• Mischaikow/Nanda (2011):
Morse theory for filtrations and efficient computation of persistent homology

• Bauer (2015/2019): Ripser
▶ uses of apparent pairs as a computational shortcut (apparent pairs are persistence pairs)
▶ apparent pairs of a simplexwise filtration form a discrete gradient

• Bauer/R (2022):
Gromov hyperbolicity, geodesic defect, and apparent pairs in Vietoris–Rips filtrations
▶ the zero persistence apparent pairs of a lexicographically refined sublevel set filtration of a

generalized discrete Morse function refine the corresponding generalized gradient
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Delaunay complexes
Voronoi diagram and Delaunay triangulation
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Delaunay complexes
Definition. The Delaunay complex Delr(X), or alpha complex, of X ⊆ Rd is the nerve of the
cover by closed Voronoi balls of radius r centered at points in X.
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Wrap
• Originally introduced by Edelsbrunner (1995) as a subcomplex of the Delaunay triangulation

for surface reconstruction, using flow lines associated to Euclidean distance functions
• Redeveloped using discrete Morse theory (Forman 1998) by Bauer & Edelsbrunner (2014/17)

Delaunay complex Wrap complex
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Morse Theory of Čech and Delaunay complexes

Proposition (Bauer, Edelsbrunner 2014). The Čech and Delaunay radius functions are both
generalized discrete Morse functions.

Theorem (Bauer, Edelsbrunner 2017).
Čech, Delaunay, and Wrap complexes (at any scale r) are related by collapses encoded by a
single discrete gradient field:

Čechr(X) ↘ Delr(X) ↘ Wrapr(X).

Remark. The Wrap complex Wrapr(X) is the smallest subcomplex of Delr(X) such that the
Delaunay gradient induces a collapse Delr(X) ↘ Wrapr(X).
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Wrap complexes
Consider the gradient V of the Delaunay radius function Del(X) → R.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).
Wrapr(X) is the descending complex of V on Delr(X): smallest subcomplex of Delr(X) that
• contains all critical simplices
• is a union of intervals of V .

roll.science/share/wrap-aatrn.pdf 12/24



Wrap complexes
Consider the gradient V of the Delaunay radius function Del(X) → R.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).
Wrapr(X) is the descending complex of V on Delr(X): smallest subcomplex of Delr(X) that
• contains all critical simplices
• is a union of intervals of V .

roll.science/share/wrap-aatrn.pdf 12/24



Wrap complexes
Consider the gradient V of the Delaunay radius function Del(X) → R.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).
Wrapr(X) is the descending complex of V on Delr(X): smallest subcomplex of Delr(X) that
• contains all critical simplices
• is a union of intervals of V .

roll.science/share/wrap-aatrn.pdf 12/24



Wrap complexes
Consider the gradient V of the Delaunay radius function Del(X) → R.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).
Wrapr(X) is the descending complex of V on Delr(X): smallest subcomplex of Delr(X) that
• contains all critical simplices
• is a union of intervals of V .

roll.science/share/wrap-aatrn.pdf 12/24



Wrap complexes
Consider the gradient V of the Delaunay radius function Del(X) → R.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).
Wrapr(X) is the descending complex of V on Delr(X): smallest subcomplex of Delr(X) that
• contains all critical simplices
• is a union of intervals of V .

roll.science/share/wrap-aatrn.pdf 12/24



Wrap complexes
Consider the gradient V of the Delaunay radius function Del(X) → R.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).
Wrapr(X) is the descending complex of V on Delr(X): smallest subcomplex of Delr(X) that
• contains all critical simplices
• is a union of intervals of V .

roll.science/share/wrap-aatrn.pdf 12/24



Wrap complexes
Consider the gradient V of the Delaunay radius function Del(X) → R.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).
Wrapr(X) is the descending complex of V on Delr(X): smallest subcomplex of Delr(X) that
• contains all critical simplices
• is a union of intervals of V .

roll.science/share/wrap-aatrn.pdf 12/24



Wrap complexes
Consider the gradient V of the Delaunay radius function Del(X) → R.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).
Wrapr(X) is the descending complex of V on Delr(X): smallest subcomplex of Delr(X) that
• contains all critical simplices
• is a union of intervals of V .

roll.science/share/wrap-aatrn.pdf 12/24



Wrap complexes
Consider the gradient V of the Delaunay radius function Del(X) → R.

Definition (Edelsbrunner 1995; Bauer, Edelsbrunner 2017).
Wrapr(X) is the descending complex of V on Delr(X): smallest subcomplex of Delr(X) that
• contains all critical simplices
• is a union of intervals of V .

roll.science/share/wrap-aatrn.pdf 12/24



Wrap complexes

Point cloud
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Wrap complexes

Delaunay triangulation
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Wrap complexes

Critical simplices
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Delaunay complex
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Exhaustively reduced cycles

The persistent homology of the Delaunay filtration Del•(X) can be computed by the
exhaustive Matrix reduction algorithm:

• total order on X induces a lexicographic total order on the simplicies σ1 < · · · < σn yielding
a simplexwise refinement K• = (Ki = {σ1, . . . , σi})i of Del•(X)

• uses a variant of Gaussian elimination:
▶ R = D boundary matrix (Z2 coefficients) of K•,

V = I identity matrix

▶ while ∃i < j with (Rj)k ̸= 0, where k = pivot Ri

▶ add Ri to Rj
▶ add Vi to Vj

• yields a reduced matrix R = D · V (columns have distinct pivots)
and V is full rank upper triangular

• determines the barcode through {[pivot Ri, i) | Ri ̸= 0}

roll.science/share/wrap-aatrn.pdf 14/24



Exhaustively reduced cycles

The persistent homology of the Delaunay filtration Del•(X) can be computed by the
exhaustive Matrix reduction algorithm:

• total order on X induces a lexicographic total order on the simplicies σ1 < · · · < σn yielding
a simplexwise refinement K• = (Ki = {σ1, . . . , σi})i of Del•(X)

• uses a variant of Gaussian elimination:
▶ R = D boundary matrix (Z2 coefficients) of K•,

V = I identity matrix

▶ while ∃i < j with (Rj)k ̸= 0, where k = pivot Ri

▶ add Ri to Rj
▶ add Vi to Vj

• yields a reduced matrix R = D · V (columns have distinct pivots)
and V is full rank upper triangular

• determines the barcode through {[pivot Ri, i) | Ri ̸= 0}

roll.science/share/wrap-aatrn.pdf 14/24



Exhaustively reduced cycles

The persistent homology of the Delaunay filtration Del•(X) can be computed by the
exhaustive Matrix reduction algorithm:

• total order on X induces a lexicographic total order on the simplicies σ1 < · · · < σn yielding
a simplexwise refinement K• = (Ki = {σ1, . . . , σi})i of Del•(X)

• uses a variant of Gaussian elimination:
▶ R = D boundary matrix (Z2 coefficients) of K•,

V = I identity matrix

▶ while ∃i < j with (Rj)k ̸= 0, where k = pivot Ri

▶ add Ri to Rj
▶ add Vi to Vj

• yields a reduced matrix R = D · V (columns have distinct pivots)
and V is full rank upper triangular

• determines the barcode through {[pivot Ri, i) | Ri ̸= 0}

roll.science/share/wrap-aatrn.pdf 14/24



Exhaustively reduced cycles

The persistent homology of the Delaunay filtration Del•(X) can be computed by the
exhaustive Matrix reduction algorithm:

• total order on X induces a lexicographic total order on the simplicies σ1 < · · · < σn yielding
a simplexwise refinement K• = (Ki = {σ1, . . . , σi})i of Del•(X)

• uses a variant of Gaussian elimination:
▶ R = D boundary matrix (Z2 coefficients) of K•,

V = I identity matrix
▶ while ∃i < j with (Rj)k ̸= 0, where k = pivot Ri

▶ add Ri to Rj
▶ add Vi to Vj

• yields a reduced matrix R = D · V (columns have distinct pivots)
and V is full rank upper triangular

• determines the barcode through {[pivot Ri, i) | Ri ̸= 0}

roll.science/share/wrap-aatrn.pdf 14/24



Exhaustively reduced cycles

The persistent homology of the Delaunay filtration Del•(X) can be computed by the
exhaustive Matrix reduction algorithm:

• total order on X induces a lexicographic total order on the simplicies σ1 < · · · < σn yielding
a simplexwise refinement K• = (Ki = {σ1, . . . , σi})i of Del•(X)

• uses a variant of Gaussian elimination:
▶ R = D boundary matrix (Z2 coefficients) of K•,

V = I identity matrix
▶ while ∃i < j with (Rj)k ̸= 0, where k = pivot Ri

▶ add Ri to Rj
▶ add Vi to Vj

• yields a reduced matrix R = D · V (columns have distinct pivots)
and V is full rank upper triangular

• determines the barcode through {[pivot Ri, i) | Ri ̸= 0}

roll.science/share/wrap-aatrn.pdf 14/24



Exhaustively reduced cycles

The persistent homology of the Delaunay filtration Del•(X) can be computed by the
exhaustive Matrix reduction algorithm:

• total order on X induces a lexicographic total order on the simplicies σ1 < · · · < σn yielding
a simplexwise refinement K• = (Ki = {σ1, . . . , σi})i of Del•(X)

• uses a variant of Gaussian elimination:
▶ R = D boundary matrix (Z2 coefficients) of K•,

V = I identity matrix
▶ while ∃i < j with (Rj)k ̸= 0, where k = pivot Ri

▶ add Ri to Rj
▶ add Vi to Vj

• yields a reduced matrix R = D · V (columns have distinct pivots)
and V is full rank upper triangular

• determines the barcode through {[pivot Ri, i) | Ri ̸= 0}

roll.science/share/wrap-aatrn.pdf 14/24



Exhaustively reduced cycles

Reduction process
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Algebraic gradient flows and persistent homology

Loose ends in the literature:
• Cohen-Steiner–Lieutier–Vuillamy (2022) consider shape reconstruction from point clouds

▶ using lexicographically minimal cycles minc∈C∗ (z + ∂c)
▶ and its connection to the persistence computation (lex. minimal ⇔ exhaustively reduced)
▶ using a slightly different total order on simplices refining the minimum enclosing radius function

• Forman (1998) defines a flow C∗(K) → C∗(K) associated to a discrete gradient

• Kozlov/Sköldberg/Jöllenbeck–Welker (2006/08/09) generalize discrete Morse theory to
based chain complexes (algebraic Morse theory)
▶ the basis elements take the role of the simplices in discrete Morse theory
▶ all other notions translate straightforwardly
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Algebraic gradient flows and persistent homology

We interpret persistent homology in terms of algebraic Morse theory:
• persistence pairs form an algebraic gradient

• exhaustive Matrix reduction corresponds to gradient flow
• the lexicographically minimal cycles are invariant under the algebraic gradient flow
• connects to generalized discrete Morse theory, and hence to the Wrap complex, through

gradient refinements (by apparent pairs)
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Minimal cycles and Wrap complexes

Theorem (Bauer, R). Let X ⊂ Rd be a finite subset in general position and let r ∈ R. Then
the lexicographically minimal cycles of Delr(X), with respect to the Delaunay-lexicographic
order on the simplices, are supported on Wrapr(X).
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Point cloud reconstruction with most persistent features
The lexicographically minimal cycle, with respect to the Delaunay-lexicographic order on the
simplices, corresponding to the interval in the persistence barcode of the Delaunay filtration
with the largest death/birth ratio:

$ docker build -o output github.com/fabian-roll/wrappingcycles
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Persistence pairs form an algebraic gradient

Let R = D · V be the reduced boundary matrix of an elementwise filtration.

The filtered chain complexes decomposes into elementary summands of the form (Ri ̸= 0):

· · · → 0 → ⟨Vi⟩
∂→ ⟨Ri⟩ → 0 → . . .

• The pairs of columns (Ri, Vi) form an algebraic gradient.
• We consider another: the reduction gradient, given by the pairs (pivot Ri, Vi).

Remark. For a simplexwise refined sublevelset filtration of a discrete Morse function, the
corresponding discrete gradient is extended by the reduction gradient.
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Exhaustive Matrix reduction corresponds to gradient flow

Definition. The flow Φ: C∗ → C∗ determined by W is the chain map given by

Φ(c) = c + ∂ F(c) + F(∂c),

where F: C∗ → C∗+1 is the unique linear map defined on the basis elements σ ∈ Σ∗ as

F(σ) = − 1
⟨∂τ, σ⟩

· τ if σ is contained in a pair (σ, τ) ∈ W.

• F is a chain homotopy between the identity and the flow Φ
• If c is a cycle, then the flow reduces to Φ(c) = c + ∂ F(c) and therefore acts on each

homology class of the chain complex by a change of representative cycle
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Exhaustive Matrix reduction corresponds to gradient flow

Let R = D · V be the reduced boundary matrix of an elementwise filtration (F2 coefficients).

• For the reduction gradient, given by the pairs (pivot Ri, Vi) with Ri ̸= 0, we have

Φ(c) = c +
∑

i∈Pivots R

ci · ∂ F(σi)

= c +
∑

i∈Pivots R

ci · ∂Vdeath i = c +
∑

i∈Pivots R

ci · Rdeath i

• the stablized cycle Φ∞(c) is the corresponding exhaustively reduced cycle
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Bridging Persistent Homology and Discrete Morse Theory

Proposition. Smaller gradients have more flow-invariant cycles, i.e., for algebraic gradients
W ⊆ P with associated algebraic flows Ψ, Φ, we have CΦ ⊆ CΨ.

zero persistence apparent pairs are contained in the reduction gradient

Proposition. For a (non-generalized) discrete gradient W on K, the associated flow invariant
chains CΨ are supported on the descending complex D(W ).

zero persistence apparent pairs refine the generalized gradient (of the Delaunay radius function)

Proposition. If W is a regular refinement of the (generalized) discrete gradient V on K, then
the descending complex D(W ) is a subcomplex of D(V ).
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Summary

• Provide a tight link between persistent homology and discrete Morse theory
▶ such that the corresponding algebraic gradient flow can be viewed as a variant of the reduction

algorithm for computing persistent homology

• Establish a strong connection between Morse-theoretic and homological approaches to
shape reconstruction
▶ lexicographically minimal cycles of Delr(X) are supported on the Wrap complex Wrapr(X)

Funding: DFG – TRR109 Discretization in Geometry and Dynamics
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